侾丏宱丂楌


巵丂柤丗拞杒塸堦

惗擭寧擔丗徍榓34擭乮1959擭乯1115擔丂乮戝嶃巗惗傑傟乯

 

尰丂怑丗

嫗搒戝妛丂杊嵭尋媶強

丂丂儐僯僢僩挿丂丂婥岓曄摦儕僗僋梊應丒揔墳尋媶丂楢実尋媶儐僯僢僩

丂丂嫵庼丂丂丂丂丂婥徾丒悈徾嵭奞尋媶晹栧丂悈暥婥徾嵭奞尋媶暘栰

         乮嫤椡島嵗丗嫗搒戝妛戝妛堾丂岺妛尋媶壢丂幮夛婎斦岺妛愱峌丂杊嵭岺妛島嵗丂悈暥婥徾岺妛暘栰乯

 

嫗搒戝妛丂暃棟帠乮塅帯丒妘抧僉儍儞僷僗扴摉乯

 

丂暥晹壢妛徣丂媄弍嶲梌乮娐嫬僄僱儖僊乕壢妛媄弍尋媶扴摉乯

 

乮岞嵿乯傂傚偆偛恔嵭婰擮21悽婭尋媶婡峔丂恖偲杊嵭枹棃僙儞僞乕丂忋惾尋媶堳

 

擔杮岺塩姅幃夛幮丂旕忢嬑屭栤

 

 

妛丂楌丗

徍榓58擭乮1983擭乯3寧丗嫗搒戝妛岺妛晹搚栘岺妛壢懖嬈

徍榓58擭乮1983擭乯4寧丗嫗搒戝妛戝妛堾岺妛尋媶壢搚栘岺妛愱峌廋巑壽掱擖妛

徍榓60擭乮1985擭乯3寧丗嫗搒戝妛戝妛堾岺妛尋媶壢搚栘岺妛愱峌廋巑壽掱廋椆

徍榓60擭乮1985擭乯4寧丗嫗搒戝妛戝妛堾岺妛尋媶壢搚栘岺妛愱峌攷巑壽掱恑妛

徍榓60擭乮1985擭乯9寧丗嫗搒戝妛戝妛堾岺妛尋媶壢搚栘岺妛愱峌攷巑壽掱拞搑戅妛

 

怑丂楌丗

徍榓60 (1985) 10寧乣暯惉212寧乮1990擭乯丗嫗搒戝妛丂杊嵭尋媶強丂悈帒尮尋媶僙儞僞乕丂彆庤

暯惉3 (1991) 1寧乣暯惉12擭乮2000擭乯3寧丗嫗搒戝妛丂杊嵭尋媶強丂悈帒尮尋媶僙儞僞乕丂彆嫵庼

暯惉12擭乮2000擭乯4寧乣暯惉15 (2003) 3寧丗嫗搒戝妛戝妛堾丂岺妛尋媶壢丂娐嫬抧媴岺妛愱峌丂娐嫬忣曬岺妛島嵗丂彆嫵庼

暯惉15 (2003) 4寧乣暯惉16擭乮2004擭乯9寧丗嫗搒戝妛戝妛堾丂岺妛尋媶壢丂搒巗娐嫬岺妛愱峌丂娐嫬忣曬妛島嵗丂彆嫵庼

暯惉16擭乮2004擭乯10寧乣暯惉17擭乮2005擭乯 3寧丗嫗搒戝妛杊嵭尋媶強丂悈帒尮尋媶僙儞僞乕丂嫵庼

暯惉17擭乮2005擭乯4寧乣尰嵼丗嫗搒戝妛杊嵭尋媶強丂婥徾丒悈徾嵭奞尋媶晹栧丂悈暥婥徾嵭奞尋媶暘栰丂嫵庼

 

暯惉2 (1990) 11寧丗嫗搒戝妛岺妛攷巑乮抧宍偑崀塉偵媦傏偡塭嬁傪峫椂偟偨抁帪娫崀塉梊應庤朄偺奐敪偲俁師尦儗乕僟乕忣曬偺棙梡偵娭偡傞尋媶乯

 

暯惉18擭搙乮2006擭搙乯乣暯惉24擭搙乮2012擭搙乯丗嫗搒戝妛丂惗懚婎斦壢妛尋媶儐僯僢僩丂婇夋愴棯僨傿儗僋僞乕

暯惉18擭搙乮2006擭搙乯乣暯惉23擭搙乮2011擭搙)  3寧丗嫗搒戝妛丂惗懚婎斦壢妛尋媶儐僯僢僩丂尋媶僼僃儘乕

暯惉18擭搙乮2006擭搙乯乣暯惉27擭搙乮2015擭搙) 10寧丗嫗搒戝妛丂惗懚婎斦壢妛尋媶儐僯僢僩丂楢実悇恑埾堳

 

暯惉27擭乮2015擭乯41擔乣暯惉29擭乮2017擭乯331擔丗嫗搒戝妛杊嵭尋媶強 暃強挿

椷榓2擭乮202061擔乣椷榓7擭乮2025331擔丗嫗搒戝妛杊嵭尋媶強丂婥岓曄摦儕僗僋梊應丒揔墳尋媶 楢実尋媶儐僯僢僩丂儐僯僢僩挿

椷榓3擭乮202141擔乣椷榓6擭乮2024331丗嫗搒戝妛杊嵭尋媶強 強挿

椷榓3擭乮202141擔乣椷榓6擭乮2024331:嫵堢尋媶昡媍夛 埾堳 乮椷榓6擭乮202441擔乣丗僆僽僓乕僶乕乯

 

椷榓3擭乮202141擔乣椷榓4擭乮2022930擔丗宱塩嫤媍夛 埾堳乮椷榓4擭乮20221030擔丗僆僽僓乕僶乕乯

椷榓3擭乮202141擔乣椷榓5擭乮2023331擔丗嫗搒戝妛丂尋媶楢実婎斦 暃婎斦挿

椷榓4擭乮202241擔乣嫗搒戝妛丂暃棟帠乮塅帯丒妘抧僉儍儞僷僗扴摉乯

椷榓4擭乮202241擔乣暥晹壢妛徣丂媄弍嶲梌乮娐嫬僄僱儖僊乕壢妛媄弍尋媶扴摉乯

椷榓6擭乮202441擔乣丗乮岞嵿乯傂傚偆偛恔嵭婰擮21悽婭尋媶婡峔丂恖偲杊嵭枹棃僙儞僞乕丂忋惾尋媶堳

椷榓6擭乮202451擔乣丗擔杮岺塩姅幃夛幮丂旕忢嬑屭栤

 

 

暯惉4擭乮1992擭乯1寧乣11寧丗暷崙傾僀僆儚戝妛悈棟妛尋媶強 (Iowa Institute of Hydraulic Research)丂媞堳彆嫵庼 (Visiting Associate Professor)

暯惉18擭搙乮2006擭搙乯乣暯惉19擭搙乮2007擭搙乯丗杊嵭壢妛媄弍尋媶強丂媞堳尋媶堳

暯惉19擭乮2007擭乯1寧乣暯惉20擭乮2008擭乯3寧丗崙棫僔儞僈億乕儖戝妛 (National University of Singapore)丂擬懷奀梞壢妛尋媶強 (Tropical Marine Science Institute)丂媞堳尋媶嫵庼 (Visiting Research Professor)

暯惉26擭乮2014擭乯9寧乣暯惉28擭乮2016擭乯9寧丗儅儔岺壢戝妛丂搚栘岺妛壢丂媞堳嫵庼 (Visiting Professor)

 

強懏妛夛丗

丂丂擔杮暔棟妛夛

丂丂搚栘妛夛

丂丂婥徾妛夛

丂丂悈暥丒悈帒尮妛夛

丂丂幚慔悈暥僔僗僥儉尋媶夛

 

偙傟傑偱偺妛夛偱偺庡側栶妱丗

搚栘妛夛丂抧媴娐嫬埾堳夛丂埾堳傑偨偼姴帠乮1997擭搙乣2002擭搙乯

搚栘妛夛丂悈岺妛埾堳夛丂埾堳 (19992014擭搙乯

搚栘妛夛丂悈岺妛埾堳夛丂悈暥晹夛挿乮19992000擭搙乯

悈暥丒悈帒尮妛夛丂憤柋埾堳夛丂埾堳挿乮20068寧乣20087寧乯

悈暥丒悈帒尮妛夛丂棟帠乮10婜丄11婜丄12婜乯乮20068寧乣20129寧乯

搚栘妛夛丂悈岺妛埾堳夛丂埾堳挿乮20152016擭搙乯

搚栘妛夛丂悈岺妛埾堳夛 僌儘乕僇儖婥岓曄摦揔墳尋媶悇恑彫埾堳夛丂埾堳寭姴帠乮20162018擭搙乯

搚栘妛夛丂悈岺妛埾堳夛丂悈奞懳嶔彫埾堳夛丂傾僪僶僀僓儕乕儃乕僪 儊儞僶乕乮20192020擭搙乯

 

妛夛娭學栶妱乮尰嵼乯丗

丂丂幚慔悈暥僔僗僥儉尋媶夛丂棟帠乮2005擭搙乣乯丄帠柋嬊挿乮20052022擭搙乯

搚栘妛夛丂悈岺妛埾堳夛丂屭栤乮2019擭搙乣乯

搚栘妛夛丂悈岺妛埾堳夛丂壨愳崸択夛丂埾堳乮20032020擭搙乯丄埾堳挿乮2021擭搙乣乯

搚栘妛夛丂悈岺妛埾堳夛丂僌儘乕僇儖婥岓曄摦揔墳尋媶悇恑彫埾堳夛丂屭栤乮2019擭搙乣乯

 

丂丂Member of Leadership Team, Climate Change Working Group,

Technical Divisions of Innovation and Professional Development (IPD), IAHR

 

徿丂敱丗

暯惉5擭乮1993擭乯3寧丗搚栘妛夛悈棟埾堳夛丂悈岺妛榑暥彠椼徿

暯惉20擭乮2008擭乯1寧丗搚栘妛夛娭惣巟晹丂岟楯徿

暯惉24擭乮2012擭乯9寧丗悈暥丒悈帒尮妛夛丂妛弍徿

暯惉28擭乮2016擭乯5寧丗擔杮婥徾妛夛丂娸曐徿

暯惉30擭乮2018擭乯11寧丗搚栘妛夛悈岺妛埾堳夛丂悈岺妛榑暥徿

椷榓尦擭乮2019擭乯6寧丗搚栘妛夛丂尋媶嬈愌徿

椷榓尦擭乮2019擭乯11寧丗搚栘妛夛悈岺妛埾堳夛丂悈岺妛榑暥徿

 

 

偙傟傑偱嵦戰偝傟偨壢妛尋媶旓曗彆嬥丗儕儞僋愭偵偲傇Cntr僉乕傪墴偟側偑傜僋儕僢僋偟偰壓偝偄乯

 

戝宆尋媶僾儘僌儔儉乮戙昞楌乯丗

仭旡攊屛僾儘僕僃僋僩乮1995擭搙乣2003擭搙乯

壢妛尋媶旓丒婎斦尋媶乮A1995擭搙乣1997擭搙乯丗旡攊屛棳堟偺悈丒擬弞娐夁掱夝柧偵岦偗偨憤崌尋媶偲塹惎摨婜嫟摨娤應丂-旡攊屛僾儘僕僃僋僩-

壢妛尋媶旓丒婎斦尋媶乮A1998擭搙乣2000擭搙乯丗塹惎摨婜廤拞/忢帪嫟摨娤應偵傛傞悈丒擬弞娐夁掱偺僗働乕儖岠壥夝柧偵娭偡傞憤崌尋媶 -旡攊屛僾儘僕僃僋僩戞2僗僥乕僕-

壢妛尋媶旓丒婎斦尋媶乮A2001擭搙乣2003擭搙乯丗塹惎摨婜/忢帪嫟摨娤應偵傛傞旡攊屛棳堟悈丒擬丒暔幙弞娐夁掱偺夝柧偵娭偡傞憤崌尋媶 -旡攊屛僾儘僕僃僋僩戞3僗僥乕僕-

COBRA僾儘僕僃僋僩 -崑塉娤應偲僎儕儔崑塉憗婜扵抦丒梊應- 2004擭搙乣2028擭搙乯

壢妛尋媶旓丒婎斦尋媶乮B2004擭搙乣2006擭搙乯丗師悽戙崀塉儗乕僟乕偺儊僜悢抣梊曬儌僨儖傊偺僨乕僞摨壔偲崀塉丒棳弌梊應偺崅惛搙壔

壢妛尋媶旓丒婎斦尋媶乮A2007擭搙乣2009擭搙乯丗師悽戙宆曃攇儗乕僟偵傛傞崀悈検悇掕丒崀悈梊應偺崅惛搙壔偲悈娗棟傊偺僀儞僷僋僩昡壙

崙搚岎捠徣丒壨愳媄弍尋媶奐敪乮2009擭搙乣2012擭搙乯丗僎儕儔崑塉梊應庤朄偺奐敪偲崑塉丒棳弌丒斆棓傪堦懱偲偟偨搒巗僗働乕儖偵偍偗傞棳堟嵭奞梊應庤朄偺奐敪

壢妛尋媶旓丒婎斦尋媶乮S2010擭搙乣2014擭搙乯丗嵟怴宆曃攇儗乕僟乕偲價僨僆僝儞僨偺摨婜廤拞娤應偲悈嵭奞寉尭偵岦偗偨憤崌揑婎慴尋媶

壢妛尋媶旓丒婎斦尋媶乮S2015擭搙乣2019擭搙乯丗僗僩乕儉僕僃僱僔僗傪懆偊傞偨傔偺愭抂僼傿乕儖僪娤應偲崑塉嵭奞寉尭偵岦偗偨憤崌尋媶

壢妛尋媶旓丒婎斦尋媶乮S2024擭搙乣2028擭搙乯丗Seeder-Feeder崑塉婡峔偺嵟愭抂僼傿乕儖僪娤應偲悈嵭奞寉尭偵岦偗偨憤崌尋媶

仭婥岓曄摦塭嬁昡壙偲揔墳乮2007擭搙乣尰嵼乯

暥晹壢妛徣丒婥岓曄摦梊應妚怴僾儘僌儔儉2007擭搙乣2011擭搙乯丗棳堟寳傪憤崌偟偨嵭奞娐嫬塭嬁昡壙 in 嬌抂尰徾僠乕儉乮僠乕儉俁乯

暥晹壢妛徣丒婥岓曄摦儕僗僋憂惗僾儘僌儔儉2012擭搙乣2016擭搙乯丗壽戣懳墳宆偺惛枾側塭嬁昡壙乮椞堟僥乕儅D

暥晹壢妛徣丒摑崌揑婥岓儌僨儖崅搙壔尋媶僾儘僌儔儉2017擭搙乣2021擭搙乯丗摑崌揑僴僓乕僪梊應乮椞堟僥乕儅D

 

偙傟傑偱埾堳夛埾堳傪柋傔偨導側傜傃偵巗丗

丂嶳岥導丄暫屔導丄戝嶃晎丄榓壧嶳導丄嫗搒晎丄帬夑導丄暉堜導丄愇愳導丄搶嫗搒

丂戝栰巗乮暉堜導乯丄嫗搒巗丄塅帯巗丄搶戝嶃巗丄戝嶃巗

 

偙傟傑偱埾堳夛埾堳傪柋傔偨崙搚岎捠徣偺抧曽惍旛嬊丗

丂嬨廈抧曽惍旛嬊丄嬤婨抧曽惍旛嬊丄拞晹抧曽惍旛嬊丄杒奀摴奐敪嬊

 

奜晹埾堳夛埾堳乮尰嵼乯丗

 

柤屆壆戝妛塅拡抧媴娐嫬尋媶強丗塣塩嫤媍夛丂埾堳

乮岞嵿乯傂傚偆偛恔嵭婰擮21悽婭尋媶婡峔丂恖偲杊嵭枹棃僙儞僞乕丗帠嬈昡壙埾堳

崙棫娐嫬尋媶強丗奜晹尋媶昡壙埾堳夛 埾堳

壨愳忣曬僙儞僞乕丗旕忢嬑棟帠

 

 

崙搚岎捠徣乮杮徣乯丗幮夛帒杮惍旛怰媍夛丂埾堳

崙搚岎捠徣乮杮徣乯丗岎捠惌嶔怰媍夛丂椪帪埾堳

 

崙搚岎捠徣乮杮徣乯丗幮夛帒杮惍旛怰媍夛丂壨愳暘壢夛丂埾堳

崙搚岎捠徣乮杮徣乯丗幮夛帒杮惍旛怰媍夛丂壨愳暘壢夛丂壨愳惍旛婎杮曽恓専摙彫埾堳夛 埾堳

崙搚岎捠徣乮杮徣乯丗幮夛帒杮惍旛怰媍夛丂壨愳暘壢夛 搚嵒嵭奞杊巭懳嶔彫埾堳夛丂埾堳

 

崙搚岎捠徣乮杮徣乯丗幮夛帒杮惍旛怰媍夛/岎捠惌嶔怰媍夛 寁夋晹夛 埾堳

崙搚岎捠徣乮杮徣乯丗幮夛帒杮惍旛怰媍夛丂娐嫬晹夛丂晹夛挿戙棟

 

崙搚岎捠徣乮杮徣乯丗壨愳媄弍昡壙埾堳夛丂埾堳

 

崙搚岎捠徣乮嬤婨抧曽惍旛嬊乯丗儗乕僟塉検寁媄弍墳梡尋媶埾堳夛丂埾堳挿

崙搚岎捠徣乮杮徣 (壨愳忣曬僙儞僞乕)乯丗壨愳娗棟偵偍偗傞儗乕僟乕妶梡専摙夛丂嵗挿戙棟

崙搚岎捠徣乮嬤婨抧曽惍旛嬊乯丗悈暥娤應埾堳夛丂埾堳挿

塅拡峲嬻尋媶奐敪婡峔(JAXA)乮抧媴娤應尋媶僙儞僞乕乯丗抧媴娤應偵娭偡傞壢妛傾僪僶僀僓儕乕埾堳夛PMM暘壢夛丂埾堳

暥晹壢妛徣丗壢妛媄弍丒妛弍怰媍夛丂尋媶寁夋丒昡壙暘壢夛丄抧媴娤應悇恑晹夛丂椪帪埾堳

暥晹壢妛徣丗壢妛媄弍丒妛弍怰媍夛丄尋媶寁夋丒昡壙暘壢夛丄杊嵭壢妛媄弍埾堳夛 椪帪埾堳

 

崙搚岎捠徣乮杮徣乯丗婥岓曄摦傪摜傑偊偨帯悈寁夋偵學傢傞媄弍専摙夛 埾堳

崙搚岎捠徣乮杮徣乯丗婥岓曄摦傪摜傑偊偨搒巗怹悈懳嶔偵娭偡傞専摙夛 埾堳

崙搚岎捠徣乮杮徣乯丗婥岓曄摦傪摜傑偊偨嵒杊媄弍専摙夛 埾堳

 

婥徾挕丒暥晹壢妛徣丗婥岓曄摦偵娭偡傞崸択夛丂埾堳

暥晹壢妛徣丗壢妛媄弍丒妛弍怰媍夛丄尋媶寁夋丒昡壙暘壢夛丄娐嫬僄僱儖僊乕壢妛媄弍埾堳夛 椪帪埾堳

 

娐嫬徣丗拞墰娐嫬怰媍夛丂抧媴娐嫬晹夛丂婥岓曄摦塭嬁昡壙摍彫埾堳夛 愱栧埾堳

娐嫬徣乮傒偢傎忣曬憤尋乯丗婥岓曄摦揔墳嶔偺PDCA庤朄専摙埾堳夛 埾堳

娐嫬徣乮嶰旽憤尋乯丗婥岓曄摦偵傛傞嵭奞寖恟壔偵娭偡傞塭嬁昡壙専摙埾堳夛 埾堳

娐嫬徣乮傒偢傎忣曬憤尋乯丗婥岓曄摦揔墳偵偍偗傞峀堟傾僋僔儑儞僾儔儞嶔掕帠嬈慡崙嬈柋丂慡崙傾僪僶僀僓乕媦傃昡壙埾堳

娐嫬徣乮噴嶰旽憤崌尋媶強乯丗婥岓曄摦傪峫椂偟偨姶愼徢丒婥徾嵭奞偵懳偡傞嫮恱惈嫮壔偵娭偡傞儅僯儏傾儖惍旛専摙嬈柋専摙埾堳夛 埾堳挿

 

娐嫬徣乮嬤婨抧曽娐嫬帠柋強乮擔杮婥徾嫤夛乯乯丗婥岓曄摦揔墳嬤婨峀堟嫤媍夛 嵗挿

娐嫬徣乮嬤婨抧曽娐嫬帠柋強乮擔杮婥徾嫤夛乯乯丗婥岓曄摦揔墳嬤婨峀堟嫤媍夛 僎儕儔崑塉懳嶔暘壢夛丂暘壢夛挿

 

擾椦悈嶻徣丗擾嬈擾懞惍旛偵偍偗傞婥岓曄摦偵娭偡傞専摙夛 埾堳

 

崙搚岎捠徣乮拞晹抧曽惍旛嬊乯丗拞晹抧曽悈嫙媼儕僗僋娗棟専摙夛 埾堳

 

揹尮奐敪姅幃夛幮丗怴媨愳僟儉憖嶌媄弍専摙夛丄埾堳

揹尮奐敪姅幃夛幮丗峟暯僟儉憖嶌媄弍専摙夛 埾堳

揹尮奐敪姅幃夛幮丗婥岓曄摦傪峫椂偟偨憐掕嵟戝奜椡乮峖悈乯偺愝掕丒昡壙偵娭偡傞桳幆幰僸傾儕儞僌埾堳

 

懝奞曐尟椏棪嶼弌婡峔丗嵭奞壢妛尋媶夛 埾堳挿

JR搶擔杮乮擔杮揝摴巤愝嫤夛乯丗揝摴杊嵭専摙埾堳夛 埾堳



俀丏尋媶嬈愌


榑暥乮僼儖嵏撉晅偒乯


1.    捙梩廩惏丒崅灗戶攏丒拞杒塸堦丗堏棳儌僨儖偵傛傞抁帪娫崀塉梊應偺専摙,搚栘妛夛悈棟島墘夛榑暥廤, 28, pp.349-354, 1984.

2.    崅灗戶攏丒捙梩廩惏丒拞杒塸堦丒挘丂徃暯丗KINEMATIC WAVE 儌僨儖偺廤拞壔,搚栘妛夛悈棟島墘夛榑暥廤, 29,  pp.239-244, 1985.

3.    拞杒塸堦丒摏堜夒峴丒抮暎廃堦丒崅灗戶攏丗崀塉暘晍摿惈偺婥徾椡妛揑夝愅,搚栘妛夛悈棟島墘夛榑暥廤, 32, pp.13-18, 1988.

4.    拞杒塸堦丒捙梩廩惏丒抮暎廃堦丒崅灗戶攏丗嶰師尦儗乕僟乕塉検寁忣曬偺壜帇壔,搚栘妛夛榑暥廤, 393/II-9, pp.161-169, 1988.

5.    Nakakita, E., M. Shiiba, S. Ikebuchi, and T. Takasao: Advanced use into rainfall prediction of three-dimensionally scanning radar, Proc. of International Seminar on Water Resources Systems, Tomamu, Japan, pp.353-368, 1989.

6.    拞杒塸堦丒捙梩廩惏丒抮暎廃堦丒崅灗戶攏丗俁師尦儗乕僟乕傪棙梡偟偨崀塉梊應庤朄偺奐敪,搚栘妛夛悈岺妛榑暥廤, 34, pp.91-96, 1990.

7.    Nakakita, E., M. Shiiba, S. Ikebuchi, and T. Takasao: Advanced use into rainfall prediction of three-dimensionally scanning radar, Stochastic Hydrology and Hydraulics, 4, pp.135-150, 1990.

8.    Nakakita, E., M. Shiiba, S. Ikebuchi, and T. Takasao: Advanced use into rainfall prediction of three-dimensionally scanning radar, Hydrological Application of Weather Radar, Edited by I.C. Clukie and C. G. Coliier, pp.391-401, Ellis Horwood, 1991.

9.    拞杒塸堦丒揷拞丂幚丒捙梩廩惏丒抮暎廃堦丒崅灗戶攏丗俁師尦儗乕僟乕僄僐乕嫮搙忣曬傪梡偄偨悈忲婥憡曄壔検偲戝婥俁師尦晽懍偺摨帪悇掕庤朄,搚栘妛夛悈岺妛榑暥廤, 36, pp.483-488, 1992. 乮悈岺妛榑暥彠椼徿庴徿榑暥乯

10. Oishi, S., E. Nakakita, and S. Ikebuchi: Local rainfall prediction knowledge based on three-dimensional wind field estimating method, Proc. of XXV Congress of IAHR, Vol.I, pp. 217-224, 1993.

11. Ikebuchi, S., E. Nakakita, K. Kakimi, and T. Adachi: Accuracy of space and time average estimation on precipitation by using satellite data, Proc. of International Symposium on HEIFE, pp.216-226, 1993.

12. Ikebuchi, S., E. Nakakita, K. Takara, M. Shiiba, and T. Takasao: A Review of related research on flood runoff forecasting, Proc. of Workshop on Observations/Forecasting of Meso-Scale Severe Weather and Technology of Reduction of Relevant Disasters, Japan Meteorological Agency, pp.205-216, 1993.

13. Yoshino, F., N. Onodera, K. Matsukura, K. Hukami, A. Yoo, and E. Nakakita: Rainfall observation by radar, Research and Practice of Hydraulic Engineering in Japan, Special Issues, No. SI-3, Hydrology, Journal of Hydroscience and Hydraulic Engineering, pp.1-25, 1993.

14. Yamada, Tadashi, Tika. Oki, Eiichi Nakakita, and Michiharu Shiiba : Rainfall mechanism and prediction, Research and Practice of Hydraulic Engineering in Japan, Special Issues, No. SI-3, Hydrology, Journal of Hydroscience and Hydraulic Engineering, pp.27-82, 1993.

15. 拞杒塸堦丒懌棫戶栫丒抮暎廃堦丗抧昞柺悈忲婥僼儔僢僋僗偑崀塉暘晍偵梌偊傞塭嬁偵娭偡傞婎慴揑専摙,搚栘妛夛悈岺妛榑暥廤, 38姫丆pp.25-32, 1994.

16. Takasao, Takuma, Michiharu Shiiba, and Eiichi Nakakita: A Real-time estimation of the accuracy of short-term rainfall prediction using radar, K.W. Hipel(ed.), Stochastic and Statistical Methods in Hydrology and Environmental Engineering, Vol.2, pp.339-351, 1994.

17. 戝愇丂揘丒栘扟桳屷丒拞杒塸堦丒抮暎廃堦丗俀師尦愊塤儌僨儖傪梡偄偨崀悈夁掱偵偍偗傞墧捈忋徃棳偺塭嬁偵娭偡傞尋媶,搚栘妛夛悈岺妛榑暥廤, 39, pp.255-260, 1995.

18. 拞杒塸堦丒悪杮憦堦榊丒抮暎廃堦丒拞懞揙棫丒墱揷徆峅丒嶳楬徍旻丒崅灗戶攏丗俁師尦儗乕僟乕偍傛傃GPV僨乕僞傪梡偄偨抁帪娫崀塉梊應庤朄,搚栘妛夛悈岺妛榑暥廤, 40, pp.303-308, 1996.

19. 栴搰丂孾丒抮暎廃堦丒拞杒塸堦丗俹俵俹悇掕偺偨傔偺崑塉億僥儞僔儍儖偺抧堟昡壙,搚栘妛夛悈岺妛榑暥廤, 40, pp.285-290, 1996.

20. 拞愳彑峀丒拞杒塸堦丒抮暎廃堦丒嵅摗丂嫓丒Baxter E. Vieux丒崅灗戶攏丗崀塉偺俁師尦峔憿傪峫椂偟偨儗乕僟乕塉検悇掕庤朄偺峔抸,搚栘妛夛悈岺妛榑暥廤, 40, pp.297-302, 1996.

21. 摗栰丂婤丒愺巬丂棽丒拞杒塸堦丗巗奨抧僗働乕儖搒巗婥徾儌僨儖偵傛傞晽丒擬娐嫬昡壙偺専摙,搚栘妛夛悈岺妛榑暥廤, 40, pp.231-236, 1996.

22. 栴搰丂孾丒捯丂婎岹丒抮暎廃堦丒拞杒塸堦丗愊塤懳棳儌僨儖傪梡偄偨抁帪娫壜擻嵟戝崀悈検乮PMP乯悇掕庤朄偺専摙,悈暥丒悈帒尮妛夛帍, 9, 2, pp.143-152, 1996.

23. Nakakita, E., S. Ikebuchi, T. Nakamura, M. Kanmuri, M. Okuda, A. Yamaji and T. Takasao: Short-term rainfall prediction method using a volume scanning radar and GPV data from numerical weather prediction, Journal of Geophysical Research, Vol. 101, No. D21, pp.26181-26197, 1996.

24. Nakagawa, K., E. Nakakita, S. Ikebuchi, T. Sato and, T. Takasao: Formulation of vertical profile of rain drop size distribution, Proc. of Int. Conference on Water Resources & Environmental Research: Towards the21st Century, Kyoto, Vol.1, pp.651-658, 1996.

25. Oishi, S., Y. Kitani, E. Nakakita, and S. Ikebuchi: Study on effects of updraft on precipitation processes using two-dimensional cumulus model, Journal of Hydroscience and Hydraulic Engineering, Vol.14,No.2, pp.81-88, 1996.

26. 拞愳彑峀丒拞杒塸堦丒嵅摗丂嫓丒抮暎廃堦丗崀塉僞僀僾偵埶懚偟偨塉揌棻宎暘晍僷儔儊乕僞偲偦偺墧捈暘晍,搚栘妛夛悈岺妛榑暥廤, 41, pp.141-146, 1997.

27. 捯丂婎岹丒戝愇丂揘丒拞杒塸堦丒抮暎廃堦丗塉揌惗惉検傪峫椂偟偨抁帪娫PMP悇掕偵娭偡傞堦峫嶡,悈岺妛榑暥廤, 41, pp.135-140, 1997.

28. Nakakita, Eiichi., Shuichi Ikebuchi, Katsuhiro Nakagawa, Toru Sato, Baxter. E. Vieux, and Takuma Takasao: Utilization of vertical profile of DSD into building up an algorithm for estimating ground rainfall amount using radar, Weather Radar Technology for Water Resources Management. (eds B. Braga and O. Massambani), UNESCO Press, Montevideo, pp.307-320, 1997.

29. 拞愳彑峀丒拞杒塸堦丒嵅摗丂嫓丒抮暎廃堦丗塉揌棻宎暘晍偺墧捈峔憿夝愅偲儗乕僟乕塉検悇掕庤朄偺峔抸,搚栘妛夛悈岺妛榑暥廤, 42, pp.7-12, 1998.

30. 戝愇丂揘丒拞杒塸堦丒抮暎廃堦丗GPS傪梡偄偨愊塤僗働乕儖偺悈忲婥忥棎拪弌庤朄偵娭偡傞悢抣幚尡揑尋媶,搚栘妛夛悈岺妛榑暥廤, 42, pp.13-18, 1998.

31. 揷拞尗帯丒拞杒塸堦丒抮暎廃堦丗旡攊屛僾儘僕僃僋僩偺棨柺夁掱儌僨儕儞僌, 搚栘妛夛悈岺妛榑暥廤, 42, pp.79-84, 1998.

32. Nakakita, Eiichi., Shuichi Ikebuchi, Minoru Tanaka, Michiharu Shiiba, and Takuma Takasao: Estimation of three-dimensional wind velocity and conversion rate of water vapor using reflectivity detected by three-dimensionally scanning  radar, Advanced in Hydrological Application of Weather Radar (Proc. of 2nd Int. Symp. on Hydrological Applications of Weather Radar, Hannover, Germany,1992, eds G. Shepherd and H. -R.Verworn), pp.222-232, 1998.

33. Nakakita, Eiichi, Shuichi. Ikebuchi, Noriyasu Sawada, Michiharu Shiiba, and Takuma Takasao: A short-term rainfall prediction method using reflectivity detected by three-dimensionally scanning radar, Advanced in Hydrological Application of Weather Radar (Proc. of 2nd Int. Symp. on Hydrological Applications of Weather Radar, Hannover, Germany, 1992, eds G. Shepherd and H. -R. Verworn), pp.326-336, 1998.

34. 拞杒塸堦丒楅栘慞惏丒抮暎廃堦丗崀塉暘晍偺抧宍埶懚摿惈偵偍偗傞帪娫僗働乕儖奒憌峔憿丆搚栘妛夛悈岺妛榑暥廤, 44, pp.91-96, 2000.

35. 拞杒塸堦丒栴恄戩栫丒抮暎廃堦丗1998撨恵廤拞崑塉偺惗婲丒揱攄摿惈丆搚栘妛夛悈岺妛榑暥廤, 44, pp.109-114, 2000.

36. 戝愇丂揘丒拞杒塸堦丒抮暎廃堦丒搰揷惤丗GPS戝婥抶墑検偺僷儚乕僗儁僋僩儖傪梡偄偨彫婯柾悈忲婥忥棎偺曄摦摿惈夝愅丆搚栘妛夛悈岺妛榑暥廤,丂戞44, pp.67-72, 2000.

37. 曅壀岾婤丒戝搶廏岝丒妏揷丂宐丒抮暎廃堦丒拞杒塸堦丒戝愇丂揘丒摗揷嬇丒崅揷朷丗嶳妜堟偺婥徾丒崀塉摿惈偵娭偡傞幚尡揑尋媶丆搚栘妛夛悈岺妛榑暥廤,丂戞44, pp.103-108, 2000.

38. 楅栘慞惏丒拞杒塸堦丒抮暎廃堦丗昗崅埶懚捈慄偵婎偯偄偨崀塉暘晍偺抧宍埶懚摿惈偺夝柧丆搚栘妛夛悈岺妛榑暥廤,丂戞45, pp.301-306, 2001.

39. Sugimoto, Soichiro, Eiichi Nakakita, and Shuichi Ikebuchi: A stochastic approach to short-term rainfall prediction using a physically based conceptual rainfall model, Journal of Hydrology, 242, pp. 137-155, 2001.

40. Nakakita, Eiichi, Yoshiharu Suzukiand Shuichi Ikebuchi: Hierarchical time-scale structure in the dependence of rainfall distribution on topographyJournal of Hydroscience and Hydraulic EngineeringVol.19No.2pp.1-102001.

41. Higuchi, A., K. Nishida, A. Kondoh, K. Tanaka, N. Ebisu, S. Iida, and E. Nakakita: A Simple and cheap method to monitor the surface status for the validation of optical satellite remote sensing. Proc. The Fifth International Study Conference on GEWEX in Asia and GAME, Aichi Trade Center, Nagoya, Japan, Vol. 1, pp.223-228, 2001.

42. 楅栘慞惏丆彅嫶恀嬚丆拞杒塸堦丆抮暎廃堦丗俁師尦峔憿偍傛傃崀塉僞僀僾傪峫椂偟偨崀塉暘晍偺抧宍埶懚摿惈偺夝愅丆搚栘妛夛悈岺妛榑暥廤丆戞46姫丆pp.13-182002

43. 拞杒塸堦丒壂懞弐榊丒楅栘慞惏丒抮暎廃堦丗崀塉偺昗崅埶懚摿惈傪摫擖偟偨TRMM/PR偵傛傞帪娫丒嬻娫暯嬒崀塉検偺悇掕丆搚栘妛夛悈岺妛榑暥廤丆戞46姫丆pp.25-302002

44. 拞愳彑峀丒拞杒塸堦丒楅栘慞惏丒戝愇丂揘丒抮暎廃堦丗TRMM/PR傪梡偄偨嶳妜堟偵偍偗傞抧忋崀塉検暘晍偺悇掕丆搚栘妛夛悈岺妛榑暥廤丆戞46姫丆pp.31-362002

45. Suzuki, YoshiharuEiichi Nakakitaand Shuichi IkebuchiStudy on the dependence properties of rainfall distributions on topographic elevationsJournal of Hydroscience and Hydraulic EngineeringVol.20No.12002.

46. 楅栘慞惏丒媨揷徃暯丒拞杒塸堦丒抮暎廃堦丗儊僜婥徾儌僨儖偵傛傞悢抣僔儈儏儗乕僔儑儞偵婎偯偄偨崀塉亅抧宍娭學偺夝愅丆搚栘妛夛悈岺妛榑暥廤丆戞47姫丆pp.73-782003

47. Suzuki, Yoshiharu, Eiichi Nakakita, and Shuichi Ikebuchi, Numerical study of rainfall-topography relationships on mountainous reigion in Japan using a mesoscale meteorological model, Weather Radar Information and Distributed Hydrological Modelling, IAHS Publications No. 282, Eds. by  Y. Tachikawa, B. E. Viuex, K. P. Georgakakos and E. Nakakita, 2003.

48. 拞杒塸堦丒慜揷柇巕丗棳堟僗働乕儖偵埶懚偟偨暘晍宆崀塉忣曬偺桳岠惈偵娭偡傞婎慴揑専摙丆搚栘妛夛悈岺妛榑暥廤丆戞48姫丆pp.307-3122004

49. 楅栘慞惏丒媨揷徃暯丒拞杒塸堦丒抮暎廃堦丗嶳妜堟偵偍偗傞崀塉亅抧宍娭學偺儊僇僯僘儉偵娭偡傞悢抣幚尡揑側尋媶丆搚栘妛夛悈岺妛榑暥廤丆戞48姫丆pp.289-2942004

50. 憡攏堦媊丒揷拞尗帯丒拞杒塸堦丒抮暎廃堦丗旕惷椡妛婥徾儌僨儖傊偺徻嵶側棨柺夁掱儌僨儖偺摫擖丆搚栘妛夛悈岺妛榑暥廤丆戞48姫丆pp.127-1322004

51. 拞杒塸堦丗搒巗壨愳偑懳徾偲偡傞崀塉尰徾丆壨愳媄弍榑暥廤丆戞10姫丆pp.19-24, 2004.

52. (尋媶僲乕僩)嬍愳堦榊丒愇揷桽愰丒徏搰戝丒彫栰孿夘丒椦懽堦丒揷拞峀庽丒娾揷揙丒拞杒塸堦丒揷拞尗帯丒旙岥撃巙丒愺徖弴丒懡揷婤丒愇愳桾旻丒瀢嶳揘嵠丒揷拞寬楬丗CAPS娤應僌儖乕僾, 旡攊屛僾儘僕僃僋僩2002擭僼儔僢僋僗柺揑廤拞娤應乮Catch A Plume by SATs: CAPS乯丗偦偺奣梫丆悈暥丒悈帒尮妛夛帍丆戞174崋丆pp.392-400, 2004.

53. 憡攏堦媊丒揷拞尗帯丒拞杒塸堦丒抮暎廡堦丗旡攊屛廃曈偺懳棳惈崀悈偵抧昞柺忬懺媦傃嬊抧弞娐偑梌偊傞塭嬁偺専摙丆搚栘妛夛悈岺妛榑暥廤丆戞49姫丆pp.259-2642005.

54. 楅栘慞惏丒姍揷夒寷丒媨揷徃暯丒拞杒塸堦丒挿扟晹惓旻丒抮暎廡堦丗崀塉-抧宍娭學偺帪嬻娫曄摦摿惈傪峫椂偟偨嶳妜堟偵偍偗傞崀塉暘晍摿惈偺夝愅丆搚栘妛夛悈岺妛榑暥廤丆戞49姫丆pp.265-2702005.

55. 拞杒塸堦丒壀崻弐夘丗恖岺塹惎偵傛傞掅昿搙娤應忣曬偐傜捈愙嶼掕偝傟傞抧揰寧崀塉検暘嶶抣偺曗惓庤朄丆搚栘妛夛悈岺妛榑暥廤丆戞50姫丆pp 199-204 , 2006

56. 拞杒塸堦丒媊杮嬘巌丗帪娫丒嬻娫僗働乕儖傪峫椂偟偨堎忢崀塉偺僌儘乕僶儖夝愅偵娭偡傞婎慴揑尋媶丆搚栘妛夛悈岺妛榑暥廤丆戞50姫丆pp 607-612 , 2006

57. 憡攏堦媊丒揷拞尗帯丒拞杒塸堦丒抮暎廃堦丗壞婫偺嶳抧堟偵偍偗傞懳棳惈崀悈搚忞悈暘検偺堘偄偑梌偊傞塭嬁丆搚栘妛夛悈岺妛榑暥廤丆戞50姫丆pp 517-522, 2006

58. 拞杒塸堦丒抾敤塰怢丒拞愳彑峀丗嵟怴宆C僶儞僪曃攇儗乕僟傪梡偄偨崀塉検悇掕惛搙偺専徹丆搚栘妛夛悈岺妛榑暥廤丆戞51姫丆pp 325-330 , 2007.

59. 拞杒塸堦丒懌棫 廩丒杒堜 崉丗抧宍惈崀塉傪摫擖偟偨儗乕僟乕媦傃GPV忣曬傪梡偄偨戜晽惈崀塉梊應庤朄偺奐敪丆搚栘妛夛悈岺妛榑暥廤丆戞51姫丆pp 337-342 , 2007.

60. Nakakita, Eiichi, Yukihisa Sato, and Kensuke Takenouchi, 4DDA of radar echo and Doppler velocity by an atmospheric model with a conceptual precipitation Model, Annual Journal of Hydraulic Engineering, JSCE, Vol.51, pp 103-108 , 2007.

61. 楅栘攷恖丒拞杒塸堦丗揝摴偲婥徾挕偺崀悈検僨乕僞傪梡偄偨戝塉偺昗崅埶懚惈偺夝愅丆搚栘妛夛悈岺妛榑暥廤丆戞51姫丆pp 283-288 , 2007.

62. Nakakita, Eiichi, Shunsuke Okane, and Lisako Konoshima, Method of correcting variance of point monthly rainfall directly estimated using low frequent observations from space, Advances in Geosciences 2006, Vol. 6Hydrological Science, World Scientific Publishing Company Pte. Ltd, pp 35-45, 2007.

63. Suzuki, Y, S. Miyata, E. Nakakita, and M. Hasebe: Numerical approach on the mechanism of precipitation-topography relationship in mountainous complex terrain, Proc. of International Congress on Modelling and Simulation 2007 (MODSIM07), pp.2131-2137, Dec. 2007.

64. 拞杒塸堦丒帥墍惓旻丗抧宍惈崀塉偺旕抧宍惈崀塉偵懳偡傞旕慄宍岠壥傪峫椂偟偨抁帪娫崀塉梊應庤朄丆搚栘妛夛悈岺妛榑暥廤丆戞52姫丆pp 331-336 , 2008.

65. 拞杒塸堦丒抾敤塰怢丒拞愳彑峀丗C僶儞僪曃攇儗乕僟乕偵傛傞崀塉検悇掕傾儖僑儕僘儉偺峔抸偵娭偡傞尋媶丆搚栘妛夛悈岺妛榑暥廤丆戞52姫丆pp 349-354 , 2008.

66. 嶳岥峅惤丒拞杒塸堦丗傾儞僒儞僽儖僇儖儅儞僼傿儖僞傪梡偄偨僪僢僾儔乕儗乕僟乕忣曬偺係師尦摨壔愝寁, 搚栘妛夛悈岺妛榑暥廤丆戞52姫丆pp 343-348 , 2008.

67. 楅栘攷恖丒拞杒塸堦丗崀塉偺嬻娫戙昞惈 亅揝摴偲婥徾挕偺崀悈検僨乕僞傪梡偄偨夝愅亅, 搚栘妛夛悈岺妛榑暥廤丆戞52姫丆 pp 187-192 , 2008.

68. Souma, Kazuyoshi, Kenji Tanaka, Eiichi Nakakita Shuichi Ikebuchi, and Kaoru Takara, Effect of the LDAS Derived Realistic Distribution of Soil Moisture on a Summertime Heat Thunderstorm Prediction in Japan, Proc. of 4th Intl. Conf. on Water Resources and Environment Research, pp.2339-2349, Australia, 2008.

69. Nakakita, Eiichi and Lisako Konoshima, Estimating global distribution of spatial and temporal correlation length of point rainfall intensity using low frequent observations from space, Advances in Geosciences 2007, Vol. 11World Scientific Publishing Company Pte. Ltd, pp. - , 2008.

70.拞杒塸堦丒栘搰棞巕丗塹惎娤應傪梡偄偨弖帪崀塉検偺帪娫憡娭挿偝偺慡媴暘晍悇掕, 搚栘妛夛悈岺妛榑暥廤丆戞53姫丆pp.217-222, 2009.

71.拞杒塸堦丒悪扟桽擇丗幬柺丒壨摴敪払夁掱偺悢棟儌僨儖傪摫擖偟偨柾媅棳堟敪惗庤朄偺奐敪, 搚栘妛夛悈岺妛榑暥廤丆戞53姫丆pp.439-444, 2009.

72.拞杒塸堦丒嶳岥峅惤丒嬿揷峃旻丒抾敤塰怢丒楅栘尗巑丒拞愳彑峀丒戝愇揘丒弌悽備偐傝丒捸栘榓媣丒戝搶拤曐丗曃攇儗乕僟乕偲價僨僆僝儞僨偺摨婜娤應偍傛傃崀悈棻巕僞僀僾敾暿, 搚栘妛夛悈岺妛榑暥廤丆戞53姫丆pp.361-366, 2009.

73. 嶳岥峅惤丒拞杒塸堦丗曃攇儗乕僟乕COBRA傪梡偄偨崀悈棻巕庬椶偺摨壔庤朄偺採埬, 搚栘妛夛悈岺妛榑暥廤丆戞53姫丆pp.355-360, 2009.

74. 漭榓柧丒揷拞尗帯丒拞杒塸堦丗悈廂巟偵婎偯偔搚忞悈暘悇掕抣偺惛搙昡壙, 搚栘妛夛悈岺妛榑暥廤丆戞53姫丆pp.403-408, 2009.

75. 楅栘攷恖丒拞杒塸堦丒崅嫶擔弌抝丗塉検寁偺娤應抣傪梡偄偨崀悈検偺嬻娫戙昞惈偺夝愅, 搚栘妛夛悈岺妛榑暥廤丆戞53姫丆pp.391-396,2009.

76. Kim, Sunmin, Yasuto Tachikawa, Eiichi Nakakita, and Kaoru Takara, Reconsideration of Reservoir operation under climate change: Case study with Yagisawa dam, Annual Journal of Hydraulic Engineering, JSCE, Vol.53, pp.120-125, 2009.

77. Takara, Kaoru, Sunmin Kim, Yasuto Tachikawa, and Eiichi Nakakita, Assessing climate change impact on water resources in the Tone River basin, Japan, using super-high-resolution atmospheric model output, Journal of Disaster Research, Vol.4, No.1, pp12-23, 2009.

78. Souma, Kazuyoshi, Kenji Tanaka, Eiichi Nakakita, Shuichi Ikebuchi, and Kaoru Takara, The effect of soil moisture on a summer time convective rainfall in central Japan, Monthly Weather Review, 2009.

79Delrieu, Guy, Isabelle Braud, Alexis Berne, Marco Borga, Brice Boudevillain, Frédéric Fabry, Jim Freer, Eric Gaume, Eiichi Nakakita, Alan Seed, Pierre Tabary, and Remko Uijlenhoet, Preface, Weather radar and hydrology, Advances in Water Resources,32, pp.969-974, 2009.

80. Kim, Sunmin, Eiichi Nakakita, Yasuto Tachikawa, and Kaoru Takara, Precipitation changes in Japan under the A1B climate change scenario, Annual Journal of Hydraulic Engineering, JSCE, Vol.54, pp.127-132 , 2010.

81. 栘搰棞嵐巕丒拞杒塸堦丗慡媴婥岓儌僨儖傪梡偄偨堎忢崀塉偲偦偺傾僕傾儌儞僗乕儞堟偵偍偗傞彨棃曄壔偺夝愅,丂搚栘妛夛悈岺妛榑暥廤丆戞54姫丆pp.217 -222, 2010.

82. 彫椦寬堦榊丒洀丂奭丒拞杒塸堦丗慡媴婥岓儌僨儖弌椡傪梡偄偨擔杮堟偺100擭妋棪擔崀悈検偺彨棃梊應, 搚栘妛夛悈岺妛榑暥廤丆戞54姫丆pp.223-228 , 2010.

83. 忛屗桼擻丒暉揷彑擵丒拞杒塸堦丗帺摦悈幙寁傪梡偄偨塉揤帪傪娷傓壨愳悈幙擹搙偺悇掕偲晧壸検嶼掕昡壙, 搚栘妛夛悈岺妛榑暥廤丆戞54姫丆pp.1387-1392 , 2010.

84. 楅栘攷恖丒拞杒塸堦丗嶳娫晹偺揝摴増慄偵偍偗傞戝塉偺昗崅埶懚惈, 搚栘妛夛悈岺妛榑暥廤丆戞54姫丆pp.337-342 , 2010.

85. 拞杒塸堦丒嶳绮梞擵丒嶳岥峅惤丗僎儕儔崑塉偺憗婜扵抦偵娭偡傞尋媶, 搚栘妛夛悈岺妛榑暥廤丆戞54姫丆pp.343-348 , 2010.

86. 彫椦寬堦榊丆洀丂奭丆拞杒塸堦: 慡媴婥岓儌僨儖弌椡偲峖悈媦傃宱嵪旐奞悇掕儌僨儖傪梡偄偨拞彫壨愳偺悈奞儕僗僋偺彨棃曄摦偵娭偡傞尋媶搚栘妛夛壨愳媄弍榑暥廤丆戞16姫丆pp. 495-500, 2010

87. Kim, Sunmin, Yasuto Tachikawa, Eiichi Nakakita, and Kaoru Takara, Hydrologic Evaluation on the AGCM20 Output Using Observed River Discharge Data, Hydrological Research Letters, Vol.4, pp.35-39, 2010.

88. Yamashiki, Yosuke, Masato Kato, Kaoru Takara, Eiichi Nakakita, Michio Kumagai, and Chunmeng Jiao, Sensitivity Analysis on Lake Biwa under the A1B SRES climate change scenario using Biwa-3D Integrated Assessment Model:part I -projection of lake temperature-, Hydrological Research Letters, Vol.4, pp.45-49, 2010.

89. Kimura, Makoto, Yoshinobu Kido, and Eiichi Nakakita, Development of real-timeflood forecasting method in urban drainage areas, Proc. of 9th International Conference on Hydroinformatics, HIC 2010, Tianjin, CHINA, pp.1802-1810, 2010.

90. 拞杒塸堦丒媑奐朁峅丒僉儉 僗儞儈儞: 抧宍惈崀塉傪峫椂偟偨儗乕僟乕抁帪娫崀塉梊應傊偺僄儔乕傾儞僒儞僽儖偺摫擖, 搚栘妛夛悈岺妛榑暥廤丆戞55姫丆pp.S_619-S_624, 2011.

91. Kim, Sunmin, Yasuto Tachikawa, Eiichi Nakakita, Kazuaki Yorozu, and Michiharu Shiiba, Climate change impact on river flow of the Tone River Basin, Japan, Annual Journal of Hydraulic Engineering, JSCE, Vol.55, pp.S_85-S_90, 2011.

92. Ratih Indri Hapsari, Satoru Oishi, Kengo Sunada, Eiichi Nakakita, and Tetsuya Sano, Singular vector method on short-term rainfall prediction using radar for hydrologic ensemble prediction, Annual Journal of Hydraulic Engineering, JSCE, Vol.55, pp.S_109-S_114, 2011.

93. 楅栘攷恖丒拞杒塸堦丒崅嫶擔弌抝: 揝摴偵偍偗傞塉検寁偺攝抲娫妘偵娭偡傞峫嶡, 栘妛夛悈岺妛榑暥廤丆戞55姫丆pp.S_271-S_276, 2011.

94. 栘懞 惤丒忛屗桼擻丒拞杒塸堦, 搒巗撪悈堟偵偍偗傞嬊強廤拞崑塉偵懳墳偟偨儕傾儖僞僀儉怹悈梊應庤朄偵娭偡傞婎慴揑専摙, 栘妛夛悈岺妛榑暥廤丆戞55姫丆pp.S_931-S_936, 2011.

95. 栘懞 惤丒忛屗桼擻丒拞杒塸堦, 搒巗壨愳撪悈堟偵偍偗傞抁帪娫嬊抧揑崑塉偵懳墳偟偨弖帪怹悈梊應庤朄偺奐敪, 壨愳媄弍榑暥廤,17, 6pp., 2011.

96. 彫椦寬堦榊丒洀奭丒拞杒塸堦, 慡媴婥岓儌僨儖弌椡偲峖悈媦傃宱嵪旐奞悇掕儌僨儖傪梡偄偨拞彫壨愳偺悈奞儕僗僋偺彨棃曄摦偵娭偡傞尋媶, 壨愳媄弍榑暥廤 17. pp.495-500, 2011.

97. Sato, Yoshinobu., Toshiharu. Kojiri, Yuri. Michihiro, Yasushi. Suzuki, and Eiichi. Nakakita, Analysis of Extreme Hydrological Events in Major River Basins in Japan under Climate Change, Proc. of the 34th Congress of the IAHR, pp.710-717, 2011.

98. Suzuki, Kenji, Kensaku Shimizu, Tadayasu Ohigashi, Kazuhisa Tsuboki, Satoru Oishi, Seiji Kawamura, Katsuhiro Nakagawa, Kosei Yamaguchi, and Eiichi Nakakita, Development of a New Videosonde Observation System for In-situ Precipitation Particle Measurements, SOLA, 2012, Vol. 8, pp.001−004, doi:10.2151/sola.2012-001, 2012.

99. 拞杒塸堦丒媨戭晀嵠丒Kyoungjun KIM丒栘搰棞嵐巕丗婥岓曄摦偵敽偆攡塉婜偺廤拞崑塉偺彨棃曄壔偵娭偡傞椞堟婥岓儌僨儖傪梡偄偨婎慴揑尋媶丆搚栘妛夛榑暥廤丆B1 (悈岺妛), 68姫丆No.4, pp.427I-432, 2012.

100. 僶僩儖丂傾僽僪儗僀儉丒埦捗恑屷丒忛屗桼擻丒拞杒塸堦丗婥岓曄摦偵傛傞嫗搒杶抧悈宯抧壓悈娐嫬傊偺塭嬁昡壙丆搚栘妛夛榑暥廤丆B1 (悈岺妛)丆戞68姫丆No.4, pp.577 -582, 2012.

101. 栘懞惤丒忛屗桼擻丒拞杒塸堦丗搒巗撪悈堟偵偍偗傞嬊強廤拞崑塉偵懳墳偟偨儕傾儖僞僀儉怹悈梊應庤朄偺娙慺壔丆搚栘妛夛榑暥廤丆B1 (悈岺妛)丆戞68姫丆No.4, pp.985-990, 2012.

102. 楅栘攷恖丒拞杒塸堦丒崅嫶擔弌抝丗揝摴偵偍偗傞塉検寁偺愝抲娫妘偲楍幵塣揮婯惂婎弨抣偺愝掕曽朄偵娭偡傞峫嶡丆搚栘妛夛榑暥廤丆B1 (悈岺妛)丆戞68姫丆No.4, pp.985-990, 2012.

103. 墇揷抭婌丒晲拞塸岲丒拞杒塸堦丒恀栘夒擵丒拞愳彑峀丒怺尒榓旻丗尰嬈C僶儞僪MP儗乕僟偵偍偗傞崀塉悇掕惛搙丆搚栘妛夛榑暥廤丆B1 (悈岺妛), 68姫丆No.4, pp.361 -366, 2012.

104. 嶳岥峅惤丒嬥尨抦曚丒拞杒塸堦丗 X僶儞僪曃攇儗乕僟乕傪梡偄偨塉揌棻宎暘晍偲偦偺帪嬻娫峔憿媦傃崀悈検偺悇掕庤朄偺奐敪丆搚栘妛夛榑暥廤丆B1 (悈岺妛), 68姫丆No.4, pp.367-372, 2012.

105. Nakakita, Eiichi, Tomohiro Yoshikai, and Sunmin Kim, Application of Error-Ensemble prediction method to a short-term rainfall prediction model considering orographic rainfall, Weather Radar and Hydrology (Proceedings of a symposium held in Exeter, UK, April 2011) (IAHS Publ., 351, 2012), pp.317-322, 2012.

106. Kimura, Makoto, Yoshinobu Kido,  and Eiichi Nakakita, Study on real-time flood forecasting method for locally heavy rainfall with high-resolution X-band polarimetric radar information, Weather Radar and Hydrology (Proceedings of a symposium held in Exeter, UK, April 2011) (IAHS Publ. 351, 2012), pp.454-459, 2012.

107. Sato, Yoshinobu, Toshiharu Kojiri, Yuri Michihiro, Yasushi Suzuki, and Eiichi Nakakita, Estimates of Climate Change Impact on River Discharge in Japan Based on a Super-High-Resolution Climate Model, Terr. Atmos. Ocean. Sci., Vol. 23, No. 5, pp.527-540, October 2012.

108. 楅栘攷恖丒拞杒塸堦丒崅嫶擔弌抝丗棧嶶揑偵攝抲偝傟偨塉検寁偺戝塉偺曔懆惈擻偵娭偡傞夝愅, 搚栘妛夛榑暥廤丆B1 (悈岺妛), 69姫丆No.4, pp.295-300, 2013.

109. 嶳岥峅惤丒拞杒塸堦丒栰拞棟怢丗9m2嫄戝塉検寁偺奐敪偵傛傞抧忋塉検寁偺曔懆棪偺昡壙, 搚栘妛夛榑暥廤丆B1 (悈岺妛), 69姫丆No.4, pp.307-312, 2013.

110. 拞杒塸堦丒惣榚棽懢丒嶳绮梞擵丒嶳岥峅惤丗僪僢僾儔乕晽懍傪梡偄偨僎儕儔崑塉偺僞儅僑偺婋尟惈梊抦偵娭偡傞尋媶, 搚栘妛夛榑暥廤丆B1 (悈岺妛), 69姫丆No.4, pp.325-330, 2013.

111. 憡攏堦媊丒揷拞尗帯丒枛師拤巌丒捸栘榓媣丒幝揷懢榊丒嶅尨撃巙丒挿扟愳峎堦丒栁栘峩嶌丒拞杒塸堦丗尰幚揑側抧昞柺忬懺検弶婜抣偑2008擭偵搶嫗搒偱敪惗偟偨嬊抧揑戝塉傊梌偊傞塭嬁, 搚栘妛夛榑暥廤丆B1 (悈岺妛), 69姫丆No.4, pp.343-348, 2013.

112. 崅揷丂朷丒揷拞桾夘丒抮暎廃堦丒拞杒塸堦丗嬊抧揑側戝塉偺梊應惛搙岦忋傪栚巜偟偨崀悈僫僂僉儍僗僩庤朄偺奐敪, 搚栘妛夛榑暥廤丆B1 (悈岺妛), 69姫丆No.4, pp.349-354, 2013.

113. 徏尨棽擵丒妢尨丂妎丒搱揷慞懡丒拞杒塸堦丒搚揷榓柅丒崅揷丂朷丗戜晽忣曬偲慡媴悢抣梊曬儌僨儖乮GSM乯偵傛傞僟儉塣梡偺夵慞偵娭偡傞婎慴専摙, 搚栘妛夛榑暥廤丆B1 (悈岺妛), 69姫丆No.4, pp.367-372, 2013.

114. Souma, Kazuyoshi, Kenji Tanaka, Tadashi Suetsugi, Kengo Sunada, Eiichi Nakakita, Kaoru Takara, and Satoru Oishi: The effects of soil moisture on a summertime convective rainfall over mountainous area and its contiguous plain in central Japan, IAHS Publication, 2013.

115. Sato, Yoshinobu, Toshiharu Kojiri, Yuri Michihiro, Yasushi Suzuki, and Nakakita Eiichi, Assessment of climate change impacts on river discharge in Japan using the super-high-resolution MRI-AGCM. Hydrological Processes (Published online: DOI:10.1002/hyp.9828), 2013.

116. Sato, Yoshinobu, Motohiro Honma, Yasushi Suzuki, Kenji Tanaka, and Eiichi Nakakita, Assessment of climate change impact on river discharge in cold and mountainous region in Japan, Cold and Mountain Region Hydrological Systems Under Climate Change: Towards Improved Projections Proceedings of H02, IAHS-IAPSO-IASPEI Assembly, Gothenburg, Sweden, July 2013 (IAHS Publ. 360, pp.1-6, 2013).

117. 嶁堜峀惓丒揷拞峩巌丒拞杒塸堦丒栰堫惤丒媨杮揘柧丗儗乕僟乕塉検傪梡偄偨DAD夝愅偲廤拞崑塉偺敪惗昿搙丄壨愳媄弍榑暥廤丄Vol.19, pp.301-306, 2013.6.

118. Yoon, Seongsim and Eiichi Nakakita, The development of rain-based urban flood forecasting method for river management practice using X-MP radar observation, Advances in River Engineering, JSCE, Vol.19, pp. 223-228 ,2013, June.

119. Yu, Wansik, Eiichi Nakakita, and Kosei Yamaguchi, Assessment of probabilistic flood forecasting using ensemble NWP rainfall with 30hr forecast time during typhoon events, Advances in River Engineering, JSCE, Vol.19, pp. 235-240 ,2013, June.

120Tatsumi, Kenichi, Yosuke Yamashiki, Kaoru Takara, Eiichi Nakakita, Reproducibility of Crop Yield Simulated by iGAEZ Model with High-resolution GCM Output, Journal of Agricultural Science and Applications (JASA), Vol. 2, Issue 2 Jun. 2013 PP. 124-130 DOI: 10.14511/jasa.2013.020211 © American V-King Scientific Publishing

121. Oku, Yuichiro and Eiichi Nakakita, Future change of the potential landslide disasters as evaluated from precipitation data simulated by MRI-AGCM3.1, Hydrological Proceses, 27, pp.3332-3340, 2013.

122. Chaffe, P.L.B. K. Takara, Y. Yamashiki, Apip, P. Luo, R.V. Silva, and E. Nakakita, Mapping of Japanese areas susceptible to snow cover change, Hydrological Sciences Journal, DOI:10.1080/02626667.2013.839874, 2013, October.

123. Suzuki, Kenji, Midori Matsuo, Eri Nakano, Shunsuke Shigeto, Kosei Yamaguchi, and Eiichi Nakakita, Graupel in the different developing stages of Baiu monsoon clouds observed by videosondes, Atmospheric Research, pp.100-110, Available online 7 October 2013.

124. Souma, Kazuyoshi, Kenji Tanaka, Tadashi Suetsugi, Kengo Sunada,Kazuhisa Tsuboki,Taro Shinoda, Yuqing Wang, Atsushi Sakakibara, Koichi Hasegawa, Qoosaku Moteki, and Eiichi Nakakita, A comparison between the effects of artificial land cover and anthropogenic heat on a localized heavy rain event in 2008 in Zoshigaya, Tokyo, Japan, Jounal of Geophsical Research, Atmosphere, Vol.118, pp.11,600-11,610, doi:10.1002/jgrd.50850, 2013.

125. 崅揷朷丒揷拞桾夘丒抮暎廃堦丒拞杒塸堦: 幚帪娫偺梊應岆嵎暘嶶偲梊應僶僀傾僗傪棙梡偟偨崀塉梊應儌僨儖弌椡抣崌惉庤朄偺奐敪, 搚栘妛夛榑暥廤丆B1 (悈岺妛), 70姫丆No.4, pp.895-900, 2014.

126. Kim, Sunmin, Eiichi Nakakaita, Yasuto Tachikawa, Michiharu Shiiba, and Masataka Inoue, Statistical Downscaling of precipitation with a formatted regression frame, Journal of Japan Society of Civil Engineers, B1 (Hydraulic Engineering), JSCE, Vol.70, No.4, pp.901-906, 2014.

127. 彫椦寬堦榊丒墱桬堦榊丒拞杒塸堦丒拞栰枮庻抝丒洀 : 埳惃榩戜晽媈帡壏抔壔幚尡偵傛傞梽愳棳堟峖悈昡壙, 搚栘妛夛榑暥廤丆B1(悈岺妛), 70姫丆No.4, pp.391-396, 2014.

128. Yu, Wansik, Eiichi Nakakita, Sunmin Kim, and Kosei Yamaguchi, Accuracy improvement of flood forecasting using pre-processing of ensemble numerical weather prediction rainfall fields, Journal of Japan Society of Civil Engineers, B1 (Hydraulic Engineering), JSCE, Vol.70, No.4, pp.151-156, 2014.

129. 憹揷桳弐丒拞杒塸堦: 倃僶儞僪曃攇儗乕僟傪梡偄偨崀悈僙儖偺儔僀僼僗僥乕僕敾暿庤朄偺奐敪, 搚栘妛夛榑暥廤丆B1 (悈岺妛), 70姫丆No.4, pp.493-498, 2014.

130. 忛屗桼擻丒杒懁桳婸丒拞杒塸堦: GCM嬻娫夝憸搙傪峫椂偟偨抧壓悈娐嫬傊偺婥岓曄摦塭嬁偺摑寁妋棪揑昡壙庤朄偵娭偡傞尋媶 搚栘妛夛榑暥廤丆B1 (悈岺妛), 70姫丆No.4, pp.1135-1140, 2014.

131. 拞杒塸堦丒惣榚棽懢丒嶳岥峅惤丗僎儕儔崑塉偺憗婜扵抦丒梊曬僔僗僥儉偺奐敪丄壨愳媄弍榑暥廤丄Vol.20, pp.355-360, 2014.6.

132. 崅揷朷丒揷拞桽夘丒抮暎廃堦丒拞杒塸堦丗崀塉僗働乕儖偺暘棧偵婎偯偄偨抁帪娫崀塉梊應庤朄偺梊應岆嵎悇掕庤朄偵娭偡傞尋媶丄壨愳媄弍榑暥廤丄Vol.20, pp.331-336, 2014.6.

133. 拞搰廏柧丒揷拞峩巌丒拞杒塸堦丒抾擵撪寬夘丒栴庣崕栫丒梴榁怢夘丒塇惗夒懃丗拞彫壨愳孮偵偍偗傞撪奜斆棓夁掱傪摜傑偊偨抧嬫暿偺旔擄敾抐丒峴摦偵娭偡傞尋媶丄壨愳媄弍榑暥廤丄Vol.20, pp.425-430, 2014.6.

134. Yu, Tian-You, Ph. D; David B. Parsons; Eiichi Nakakita; Toshitaka Tsuda; Hirohiko Ishikawa, Mitigating the Impact of Severe Weather and Climate Variability through Innovative Sensing, Modeling, and Prediction, BAMS-D-14-00027, Bulletin of the American Meteorological Society, 2014.

135丏揷拞峩巌丒拞搰廏柧丒拞杒塸堦丒抾擵撪寬夘丒栴庣崕栫丒梴榁怢夘丒塇惗夒懃丗巗奨抧偺曄慗傪摜傑偊偨峖悈斆棓儕僗僋昡壙偵傛傞杊嵭寁夋, 楌巎搒巗杊嵭榑暥廤, Vol.8, pp.91-98, 2014.

136丏抾擵撪寬夘丒拞搰廏柧丒揷拞峩巌丒拞杒塸堦丒栴庣崕栫丒梴榁怢夘丒塇惗夒懃丗拞彫壨愳孮偺斆棓夝愅偲婥徾忣曬傪棙梡偟偨抧堟杊嵭寁夋偑憐掕偡傞嵭奞僀儊乕僕偺帠慜峔抸, 搚栘妛夛榑暥廤F6 (埨慡栤戣), Vol.70, No.2, pp.I_37-I_44, 2014.

137. 拞杒塸堦丒憪栰惏崄丒KIM Sunmin, 攡塉婜廤拞崑塉傪傕偨傜偡戝婥応摿惈偺婥岓曄摦偵敽偆弌尰昿搙偺彨棃曄壔梊應, 搚栘妛夛榑暥廤丆B1 (悈岺妛), 71姫丆No.4, pp.373-378, 2015.3.

138. 搶丂弐岶丒栴恄戩栫丒拞杒塸堦丒屆夑岝旻, 憱峴懍搙傪峫椂偟偨崀塉嫮搙悇掕庤朄偺採埬, 搚栘妛夛榑暥廤丆B1 (悈岺妛), 71姫丆No.4, pp.493-498.2015.3.

139. 楅栘攷恖丒戝搰棾擇丒拞杒塸堦丒崅嫶擔弌抝, 塉検寁偵傛傞戝塉偺曔懆惈擻偺昡壙偲塉検寁偺庴帩偪嬫娫偺尒捈偟曽朄偵娭偡傞尋媶, 搚栘妛夛榑暥廤丆B1 (悈岺妛), 71姫丆No.4, pp.1303-1308, 2015.3

140. 忛屗桼擻丒嵅摗丂崑丒拞杒塸堦, 搒巗塉悈娗棟僔僗僥儉偺幚帪娫惂屼偵偍偗傞倃僶儞僪曃攇儗乕僟乕偵傛傞崀悈梊應忣曬偺桳岠棙梡曽嶔偵娭偡傞尋媶, 搚栘妛夛榑暥廤丆B1 (悈岺妛), 71姫丆No.4, pp.1345-1350, 2015.3.

141. Oue, Mariko, Kazuhisa Tsuboki, and Eiichi Nakakita, Vertical distribution of precipitation particles in Baiu frontal stratiform intense rainfall around Okinawa Island, Japan, Journal of Geophysical Research – Atmospheres, 120, pp.5622-5637, doi:10.1002/2014JD022712, 2015.

142. Yu, Wansik, Eiichi Nakakita, Sunmin Kim, and Kosei Yamaguchi, Improvement of rainfall and flood forecasts by blending ensemble NWP rainfall with radar prediction considering orographic rainfall, Journal of Hydrology, Vol.531, pp.494-507, doi:10.1061/jhydrol.2015.04.055, 2015.

143. 曅嶳彑擵丒嶳楬徍旻丒拞懞暥旻丒怷揷岹丒拞杒塸堦丗嬊抧揑崑塉扵抦僔僗僥儉偺奐敪丄壨愳媄弍榑暥廤丄Vol.21, pp.401-406, 2015.6.

144. 徏杮岾戝丒愜抮梇懢丒楅栘媣婭丒抾尒揘栫丒拞杒塸堦丗戜晽帪偺崀塉検悇掕庤朄偵娭偡傞尋媶丄壨愳媄弍榑暥廤丄Vol.21, pp.419-424, 2015.6.

145. 揷拞峩巌丒嬥暎拞丒拞搰廏柧丒拞杒塸堦丒梴榁怢夘丒塇惗夒懃丗崑塉偵傛傞峖悈丒搚愇棳偺敪惗傪憐掕偟偨儅儖僠丒僴僓乕僪偲旕擄敾抐婎弨偵娭偡傞尋媶丄壨愳媄弍榑暥廤丄Vol.21, pp.485-490, 2015.6.

146. Yoon, Seongsim and Eiichi Nakakita, Application of an X-Band Multi-Parameter Radar Network for Rain-Based Urban Flood Forecasting, Journal of Hydrologic Engineering, ASCE, 2015.

147. Yu, Wansik, Eiichi Nakakita, Sunmin Kim, and Kosei Yamaguchi, Assessment of Uncertainty Propagation of Ensemble NWP Rainfall to Flood Forecasting with Catchment Scale, Advances in Meteorology, 2015.

148. Ogawa, Mariko, Satoru Oishi, Kosei Yamaguchi, and Eiichi Nakakita, Quantitative Parametric Approach to Estimating Snowflake Size Distributions Using an Optical Sensing Disdrometer, SOLA, Vo.11, pp.134-137, doi:10.2151/sola.2015-031,2015.

149. Touge, Toshiya, Kenji Tanaka Temur KHUJANAZAROV, Kristina TODERICH, Osamu KOZAN and Eiichi NAKAKITA, Developing aWater Circulation Model in the Aral Sea Basin Based on in situ Measurements on Irrigated Farm,Journal of Arid Land Studies, Vol.25, No.3, pp.133-136, 2016.

150. Suzuki, Kenji, Natsumi Munechika, Katsuhiro Nakagawa, Kosei Yamaguchi, and Eiichi Nakakita, Simultaneous measurements of a stratiform cloud by multipoint videosonde launchings, SOLA 12(1), pp.12-16, 2016.

151. 憹揷桳弐丒拞杒塸堦, 倃僶儞僪曃攇儗乕僟傪梡偄偨敪払偡傞崀悈僙儖偺専弌偵娭偡傞尋媶, 搚栘妛夛榑暥廤丆B1 (悈岺妛), 72姫丆No.4, pp.193-198, 2016.3

152. 拞杒塸堦丒嵅摗桰恖丒嶳岥峅惤, 僎儕儔崑塉偺僞儅僑惗惉帪偵偍偗傞塓娗峔憿偺婎慴揑夝愅, 搚栘妛夛榑暥廤丆B1 (悈岺妛), 72姫丆No.4, pp.199-204, 2016.3

153. 嶳岥峅惤丒崅尒榓栱丒堜忋丂幚丒拞杒塸堦, 崑塉偺乽庬乿傪懆偊傞偨傔偺搒巗岠壥傪峫椂偡傞LES婥徾儌僨儖偺奐敪, 搚栘妛夛榑暥廤丆B1 (悈岺妛), 72姫丆No.4, pp.205-210, 2016.3.

154丏徏尨棽擵丒妬丂孾夘丒抮岥岾岹丒拞杒塸堦丒搚揷榓柅丄婥徾挕崀塉梊應乮GSM乯偲戜晽忣曬傪妶梡偟偨敪揹愱梡僟儉偺塣梡崅搙壔庤朄偺幚徹丄搚栘妛夛榑暥廤丆B1 (悈岺妛), 72姫丆No.4, pp.1195-1200, 2016.3.

155. Yu, Wansik, Eiichi Nakakita, Sunmin Kim, Kosei Yamaguchi, Improving the accuracy of flood forecasting with transpositions of ensemble NWP rainfall fields considering orographic effects, Journal of Hydrology, 2016 (in printing).

156. 抾擵撪寬夘丒拞杒塸堦丒栴庣崕栫丒揷拞峩巌丒梴榁怢夘, 壨愳丒婥徾忣曬偺廧柉偵傛傞庡懱揑側棙梡傪栚巜偟偨抧堟忣曬偲偟偰偺妶梡庤朄偺採埬, 壨愳媄弍榑暥廤丄Vol.21, 2016.

157. Yoon, Seongsim, Eiichi Nakakita, Ryuta Nishiwaki, and Hiroto Sato, Research on the radar-based risk prediction of sudden downpower in urban area: a case study of metropolitan area, Journal of Korea Water Resouses Association, Vol.49 No.9, pp.749-759, 2016. (Korean with English abstract)

158. Mizuta, Ryo; Akihiko Murata; Masayoshi Ishii; Hideo Shiogama; Kenshi Hibino; Nobuhito Mori; Osamu Arakawa; Yukiko Imada; Kohei Yoshida; Toshinori Aoyagi; Hiroaki Kawase; Masato Mori; Yasuko Okada; Tomoya Shimura; Toshiharu Nagatomo; Mikiko Ikeda; Hirokazu Endo; Masaya Nosaka; Miki Arai; Chiharu Takahashi; Kenji Tanaka; Tetsuya Takemi; Yasuto Tachikawa; Khujanazarov Temur; Youichi Kamae; Masahiro Watanabe; Hidetaka Sasaki; Akio Kitoh; Izuru Takayabu; Eiichi Nakakita, Over 5000 years of ensemble future climate simulations by 60 km global and 20 km regional atmospheric models, Bulletin of the American Meteorological Society, 2016.

159.Takemi, Tetsuya, Yasuko Okada, Rui Ito, Hirohiko Ishikawa, and Eiichi Nakakita, Assessing the impacts of global warming om meteorological hazards and risks in Japan: Philosophy and achievements of the SOUSEI program, Hydrological Research Letters, Vol.10, No.4, pp119-125, 2016.

160丏怷丂怣恖丒巙懞抭栫丒媑揷峃暯丒悈揷丂椇丒壀揷桋巕丒Khujanazarov Temur 丒愇堜惓岲丒栘杮徆廏丒崅桏弌丒拞杒塸堦丆慡媴60kmAGCM傪梡偄偨戝婯柾傾儞僒儞僽儖婥岓梊應幚尡偲偙傟傪梡偄偨崅挭挿婜昡壙丆搚栘妛夛榑暥廤B2乮奀娸岺妛乯丆Vol. 72, No. 2, I_1471劅I_1476, 2016.

161. Nakakita, Eiichi, Hiroto Sato, Ryuta Nishiwaki, Hiroyuki Yamabe, and Kosei Yamaguchi, Early Detection of Baby-Rain-Cell Aloft in a Severe Storm and Risk Projection for Urban Flash Flood, Advances in Meteorology, 15pp., Article ID 5962356, 2017.

162 Kim, Sunmin, Yasuto Tachikawa, and Eiichi Nakakita, Statistical downscaling of AGCM60km precipitation based on spatial correlation of AGCM20km output, Hydrological Research Letters, Vol.11, No.1, pp73-79, 2017.

163. 楅栘攷恖丒拞杒塸堦丒崅嫶擔弌抝丄1km儊僢僔儏夝愅塉検偺惛搙専徹 乗娭搶峛怣墇抧曽偲搶杒抧曽偵偍偗傞夝愅乗丄搚栘妛夛榑暥廤丆B1 (悈岺妛), 73姫丆No.4, pp.13-18, 2017.3.

164. 拞杒塸堦丒怷尦孾懢楴丒摶丂壝嵠丄5km夝憸搙椞堟婥岓儌僨儖傪梡偄偨僎儕儔崑塉惗婲昿搙偺彨棃曄壔悇掕丄搚栘妛夛榑暥廤丆B1 (悈岺妛), 73姫丆No.4, pp.133-138, 2017.3.

165. 嶳岥峅惤丒屆揷峃暯丒拞杒塸堦丄XRAIN傪梡偄偨傾儞僒儞僽儖摨壔偵傛傞慄忬崀悈懷偺堐帩偲敪惗偺梊應丄搚栘妛夛榑暥廤丆B1 (悈岺妛), 73姫丆No.4, pp.211-216, 2017.3.

166. 搶丂弐岶丒曅嶳彑擵丒拞杒塸堦丄儅儖僠僙儖宆僗僩乕儉偺憗婜扵抦偵娭偡傞尋媶丄搚栘妛夛榑暥廤丆B1(悈岺妛), 73姫丄No.4pp.223-228, 2017.3.

167. 埳摗桟壥丒捈尨桰婭巕丒戝愇丂揘丒拞杒塸堦丄堏棳儌僨儖傪梡偄偨抁帪娫崀塉梊應惛搙岦忋偺偨傔偺梊應僷僞乕儞慖暿庤朄偵娭偡傞尋媶丄搚栘妛夛榑暥廤丆B1 (悈岺妛), 73姫丆No.4, pp.229-234, 2017.3.

168. 徏尨棽擵丒崅揷丂朷丒拞杒塸堦丄婥徾挕廡娫傾儞僒儞僽儖梊曬偲婥徾挕GSM傪妶梡偟偨棳堟塉検偺梊應惛搙岦忋庤朄偺婎慴揑専摙丄搚栘妛夛榑暥廤丆B1 (悈岺妛), 73姫丆No.4, pp.265-270, 2017.3.

169丏搶 弐岶丒嬥尨 抦曚丒嶳岥 峅惤丒拞杒 塸堦: X僶儞僪曃攇儗乕僟栐傪梡偄偨戝棻巕偺忋嬻扵抦偵娭偡傞尋媶, 搚栘妛夛榑暥廤丄B1 乮悈岺妛乯, Vol.73, No.3, pp.43-53, 2017.

170丏楅栘攷恖丒拞杒塸堦丒崅嫶擔弌抝:儗乕僟乕塉検偺楍幵塣揮婯惂傊偺妶梡偵娭偡傞尋媶丄搚栘妛夛榑暥廤, B1 乮悈岺妛乯, Vol.73, No.3, pp.54-70, 2017.

171. 彫愳傑傝巕丒戝愇丂揘丒楅栘尗巑丒拞愳彑峀丒嶳岥峅惤丒拞杒塸堦丗價僨僆僝儞僨偱應掕偝傟偨忋嬻偺塉揌偵懳偡傞曔懆岠棪偵娭偡傞尋媶, 搚栘妛夛榑暥廤丆B1 (悈岺妛), 74姫丆No.4, pp.49-54, 2018.3.

172. 拞杒塸堦丒怴曐桭孾丒嵅摗桰恖丒嶳岥峅惤丒戝搶拤曐丗Ka僶儞僪儗乕僟乕傪棙梡偟偨愊棎塤惗惉抜奒偵娭偡傞尋媶, 搚栘妛夛榑暥廤丆B1 (悈岺妛), 74姫丆No.4, pp.55-60 2018.3.

173丏嶳岥峅惤丒忋搱堦庽丒杧抮梞桽丒拞杒塸堦丗塤忣曬娤應傪憐掕偟偨僨乕僞摨壔偵傛傞僎儕儔崑塉梊應, 搚栘妛夛榑暥廤丆B1 (悈岺妛), 74姫丆No.4, pp.61-662018.3.

174. 拞杒塸堦丒彫嶁揷備偐傝丗婥岓曄摦偵敽偆攡塉婜廤拞崑塉偲戝婥応偺彨棃曄壔偵娭偡傞儅儖僠僗働乕儖夝愅, 搚栘妛夛榑暥廤丆B1 (悈岺妛), 74姫丆No.4, pp.139-144. 2018.3.乮悈岺妛榑暥徿庴徿榑暥乯

175. Harjupa, Wendi, Eiichi NAKAKITA, Yasuhiko SUMIDA, and Kosei YAMAGUCHIFundamental investigation of generation of guellira-heacy rainfall using Himawari-8 and XRAIN information on Kinki rigion, Journal of Japan Society of Civil Engineers, B1 (Hydraulic Engineering), JSCE, Vol.74, No.4, pp.283-288, 2018.3.

176. 崅憅廏岾丒壨揷挩椇丒拞杒塸堦丒拞捗愳惤丗婥徾梊應忣曬傪揔梡偟偨敪揹愱梡僟儉偵偍偗傞棳堟旐奞寉尭塣梡庤朄偺専摙丆搚栘妛夛壨愳媄弍榑暥廤丆戞24姫丆pp.617-622, 2018.6.

177. Osakada, Yukari, and Eiichi Nakakita, Future Change of Occurrence Frequency of Baiu Heavy Rainfall and Its Linked Atmospheric Patterns by Multiscale Analysis, SOLA, 14, 79-85, doi:10.2151/sola.2018-014., 2018.6

178. Yu, Wansik, E. Nakakita, S. Kim, and K. Yamaguchi,
Assessment of ensemble flood forecasting with numerical weather prediction by considering spatial shift of rainfall fields, Water Resources and Hydrologic Engineering, KSCE Journal of Civil Engineering, Vol.22, pp.3686-3696, 2018.09.

179. Wu, Ying-Hsin, Takahiro Sayama, and Eiichi Nakakita, Appropriate boundary condition 6or Dupuit-Boussinesq theory on the steady groundwater flow in an unconfined sloping aquifer with recharge, Water Resources Research, Vol.54, pp.5933-5947, 2018.10.

180. Wu, Ying-Hsin and Eiichi Nakakita, A transient model for shallow groundwater table evolution in an unconfined sloping aquifer, Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering), Vol.74, No.5, pp.319-324, 2018.6.

181. 彫嶁揷備偐傝丆拞杒塸堦丗椞堟婥岓儌僨儖偵傛傞攡塉崑塉宲懕帪娫偲愊嶼塉検偺彨棃曄壔梊應偲夁嫀偺帠椺傪梡偄偨専徹丆搚栘妛夛榑暥廤B1乮悈岺妛乯丆Vo.74, No.5, pp.19-24, 2018.6.

182. 拞杒塸堦丒嫶杮嫿巙丒怷尦孾懢楴丒彫嶁揷備偐傝, 婥岓曄摦偵敽偆戝婥埨掕壔媦傃悈忲婥怹弫偑僎儕儔崑塉惗婲昿搙偵媦傏偡塭嬁, 搚栘妛夛榑暥廤B1乮悈岺妛乯丆Vo.74, No.5, pp.25-30, 2018.6. 乮悈岺妛榑暥徿庴徿榑暥乯

183. 庒寧懽岶丒場敠捈婓丒嶳岥峅惤丒拞杒塸堦, X僶儞僪儅儖僠僷儔儊乕僞儗乕僟傪梡偄偨塉揌棻宎暘晍偲崀悈検偺悇掕, 搚栘妛夛榑暥廤B1乮悈岺妛乯丆Vo.74, No.5, pp.247-252, 2018.6.

184. 拞愳彑峀丒曅嶳彑擵丒憹揷桳弐丒惀捗峩巌丒拞杒塸堦, 塓娗傪梡偄偨嬊抧揑崑塉扵抦庤朄偵娭偡傞尋媶, 栘妛夛榑暥廤B1乮悈岺妛乯丆Vo.74, No.5, pp.265-270, 2018.6.

185. 嶳岥峅惤丒杧抮梞桽丒拞杒塸堦, 暯惉297寧嬨廈杒晹崑塉偵偍偗傞慄忬崀悈懷偺梊應壜擻惈偲敪払婡峔偺夝愅, 搚栘妛夛榑暥廤B1乮悈岺妛乯丆Vol.74, No.5, pp.277-282, 2018.6.

186. Harjupa, Wendi, Eiichi Nakakita, Yasuhiko Sumida, Aritoshi Masuda, TRIAL UTILIZATION OF RAPID SCAN OBSERVATION OF HIMAWARI-8 FOR OBTAINING INFORMATION ON CUMULUS LIFE STAGE, Journal of Japan Society of Civil Engineers, B1 (Hydraulic Engineering), JSCE, Vol.74, No.5, pp.283-288, 2018.6.

187. 拞恵夑弤丒崄愳梇帯丒嵅摗丂柋丒墇抭椣峅丒拞懞尓堦丒恵夑棿懢榊丒拞杒塸堦, 憗婜偺帠慜杊嵭峴摦偵帒偡傞峖悈梊應忣曬偺採帵庤朄 乣峳愳壓棳堟傪懳徾偲偟偰乣, 搚栘妛夛榑暥廤B1乮悈岺妛乯丆Vol.74, No.5, pp.1285-1290, 2018.6.

188. 拞熀梱暯丒楅栘攷恖丒拞杒塸堦, 楍幵塣揮婯惂傊偺妶梡傪栚揑偲偟偨崀塉梊應忣曬偺惛搙専徹, 搚栘妛夛榑暥廤B1乮悈岺妛乯丆Vol.74, No.5, pp.1303-1308, 2018.6.

189Mori, Nobuhito, Tomoya Shimura, Kohei Yoshida, Ryo Mizuta, Yasuko Okada, Mikiko Fujita, Temur Khujanazarov, and Eiichi Nakakita, Future changes in extreme storm surges based on mega-ensemble projection using 60-km resolution atmospheric global circulation model, Coastal Engineering Journal, https://doi.org/10.1080/21664250.2019.1586290, 2019.3.

190. 拞熀梱暯丒楅栘攷恖丒嬥尨抦曚丒墦摗丂棟丒拞杒塸堦, 崀塉梊應忣曬傪梡偄偨楍幵塣揮婯惂偺敪椷梊應惛搙偺昡壙, 搚栘妛夛榑暥廤B1乮悈岺妛乯丆Vol.75, No.2, pp.121-1126, 2019.6.

191. Harjupa, Wendi Eiichi Nakakita, Yasuhiko Sumida, Aritoshi Masuda, RDCA INDEX BASED UPDRAFT AREA AND ITS VERIFICATION USING POLARIMETRIC DOPPLER RADAR, Journal of Japan Society of Civil Engineers, B1 (Hydraulic Engineering), JSCE, Vol.75, No.2, pp.127-132, 2019.6.

192. Wu, Ying-Hsin, Eiichi Nakakita, ASSESSMENT OF LANDSLIDE HAZARDS USING LOGISTIC REGRESSION WITH HIGH-RESOLUTION RADAR RAINFALL OBSERVATION AND GEOLOGICAL FACTOR, Journal of Japan Society of Civil Engineers, B1 (Hydraulic Engineering), JSCE, Vol.75, No.2, pp.157-162, 2019.6.

193. 嶳岥峅惤丒崟揷撧撨丒拞杒塸堦, 慄忬崀悈懷崑塉梊應偵岦偗偨悈忲婥偺傾儞僒儞僽儖梊應忣曬偺峏怴棜楌夝愅, 搚栘妛夛榑暥廤B1乮悈岺妛乯丆Vol.75, No.2, pp.1153-1158, 2019.6.

194. 拞杒塸堦丒崅旜廩惌丒怴曐桭孾丒嶳岥峅惤丒拞愳彑峀, Ka僶儞僪儗乕僟偲僼僃乕僘僪傾儗僀儗乕僟傪梡偄偨僎儕儔崑塉敪払弶婜偺愊棎塤徻嵶夝愅, 搚栘妛夛榑暥廤B1乮悈岺妛乯丆Vol.75, No.2, pp.1171-1176, 2019.6.

195. 戝愇丂揘丒椦丂捈婓丒彫愳傑傝巕丒妬愳媊岾丒拞杒塸堦, 價僨僆僝儞僨傪梡偄偨墧捈晽懍僾儘僼傽僀儖偺嶼弌偲塤暔棟揑夝愅, 搚栘妛夛榑暥廤B1乮悈岺妛乯丆Vol.75, No.2, pp.1177-1182, 2019.6.

196. 彫嶁揷備偐傝丆拞杒塸堦丆暯惉307寧崑塉偺摿挜媦傃抧媴壏抔壔偵傛傞塭嬁昡壙丆搚栘妛夛榑暥廤B1乮悈岺妛乯丆Vol.75, No1, pp.231-238, 2019.6.

167. 嶳楬徍旻丒憹揷桳弐丒拞杒塸堦丆2師尦僙儖捛愓庤朄偵婎偯偄偨崅徻嵶儗乕僟崀塉忣曬偵傛傞抁帪娫崀塉梊應庤朄偺奐敪, 壨愳媄弍榑暥廤, 26, 2020.6.乮報嶞拞乯.

198. KIM, Hwayeon and Eiichi NAKAKITA, Development of the early detectionand quantitative risk prediction method on the guerrilla heavy rainfall, Journal of Japan Society of Civil Engineers, B1 (Hydraulic Engineering), JSCE, Vol.76, No.2, pp.175-180, 2020.8.

199. 彫嶁揷備偐傝丒拞懞丂埁丒拞杒塸堦, 攡塉婜廤拞崑塉偺帪嬻娫摿惈傪峫椂偟偨嫮塉宲懕帪娫偲愊嶼塉検偺彨棃曄壔偺摑寁暘愅, 搚栘妛夛榑暥廤B1乮悈岺妛乯丆Vol.76, No.2, pp.7-12, 2020.8.

200丏彫嶁揷備偐傝丒拞杒塸堦, 攡塉婜廤拞崑塉偺帪嬻娫摿惈傪峫椂偟偨嫮塉宲懕帪娫偲愊嶼塉検偺彨棃曄壔偺摑寁暘愅, 搚栘妛夛榑暥廤B1乮悈岺妛乯丆Vol.76, No.2, pp.1-6, 2020.8.

201. Ying-Hsin WU, Eiichi NAKAKITA and Masaru KUNITOMO,Future Cahnge of rainfall-triggered land slide risk using NHRCM05 based on crtitical line method, Journal of Japan Society of Civil Engineers, B1 (Hydraulic Engineering), JSCE, Vol.76, No.2, pp.67-72, 2020.8.

202. 嶳岥峅惤丒戝栰揘擵丒拞杒塸堦, 壏埵岡攝偵拝栚偟偨墧捈塓搙僨乕僞摨壔庤朄偺採埬偲棟憐幚尡, 搚栘妛夛榑暥廤B1乮悈岺妛乯丆Vol.76, No.2, pp.259-264, 2020.8.

203. AHMAD, Fauziana, Kosei YAMAGUCHI and Eiichi NAKAKITA, Investigation of single cell to multicell in the cluster thunderstorms using vorticity analysis, Journal of Japan Society of Civil Engineers, B1 (Hydraulic Engineering), JSCE, Vol.76, No.2, pp.187-192, 2020.8.

204. 崅尒 榓栱丒楅栘 尗巑丒嶳岥 峅惤丒拞杒 塸堦, 搤婜偺島巘堎宍懺偺敾暿傪栚揑偵偟偨曃攇儗乕僟乕傪梡偄偨0亷崅搙悇掕庤朄, 搚栘妛夛榑暥廤B1乮悈岺妛乯丆Vol.76, No.2, pp.205-210, 2020.8.

205. 拞熀 梱暯丒楅栘 攷恖丒嬥尨 抦曚丒墦摗 棟丒拞杒 塸堦, 楍幵塣揮婯惂傊偺妶梡偺偨傔偺抁帪娫崀塉梊應偺曗惓庤朄偺専摙, 搚栘妛夛榑暥廤B1乮悈岺妛乯丆Vol.76, No.2, pp.409-414, 2020.8.

206. 戝愇 揘丒撿嫿 泫夘丒妬愳 媊岾丒嶳塝 崉丒楅栘 尗巑丒嶳岥 峅惤丒拞杒 塸堦, 價僨僆僝儞僨偲悢抣僔儈儏儗乕僔儑儞偵傛傞塤撪偺塉揌棻宎暘晍寁應庤朄偵娭偡傞尋媶搚栘妛夛榑暥廤B1乮悈岺妛乯丆Vol.76, No.2, pp.199-204, 2020.8.

207. 壛摗 戝曘幝尨 悙惗塱栰 棽巑壛摗 夒栫捸栘 榓媣揷拞 抭戝棫愳 峃恖拞杒 塸堦丄d4PDF傪巊梡偟偨儀僩僫儉丒峠壨偺嬌抣棳検偺彨棃曄壔梊應, 搚栘妛夛榑暥廤俛侾乮悈岺妛乯 76(1) 107-117 2020.8. 

208. Mori, Nobuhito, Tetsuya Takemi, Yasuto Tachikawa, Hirokazu Tatano, Tomoya Shimura,Tomohiro Tanaka, Toshimi Fujimi, Yukari Osakada, Adrean Web, and Eiichi Nakakita, Recent nationwide climate change impact assessments of natural hazards in Japan and East Asia, Weather and Climate Extremes, https://www.dropbox.com/s/odble5jmvq2dvj2/proof_WACE_100309_AW.pdf?dl=0, 2021.2.

209Nugroho,Ginaldi Ari, Kosei Yamaguchi, Eiichi Nakakita,Masayuki K. Yamamoto, and Seiji Kawamura, Utilization of High-Resolution Boundary Layer Radar and Wavelet to Detect Microscale Downdraft-Updraft Combination, SOLA, 2021, Vol.17, pp. 63−68, doi:10.2151/sola.2021-010, 2021.2

210丏徏杮 抦巑丒抮揷 揟擵丒壨揷 挩椇丒嶳揷 朁恖丒拞捗愳 惤丒拞杒 塸堦丄d4PDF 傪妶梡偟偨敪揹愱梡僟儉偵傛傞峖悈旐奞寉尭塣梡庤朄偺岠壥専徹丄壨愳媄弍榑暥廤丆戞27 姫丆2021 6 .

211Wu Ying-Hsin, E. Nakakita, A. Yamaji: Future change of snake line pattern and its relation to sediment disasters, Journal of Japan Society of Civil Engineers Ser. B1 (Hydraulic Engineering), 77(2), I_193-I_198, 2021.12.

212丏拞杒塸堦丒尨揷錆抦丒彫嶁揷備偐傝丗抧媴壏抔壔偵敽偆攡塉婜偺崀塉偍傛傃戝婥応偺僞僀儉僔乕儉儗僗側彨棃曄壔夝愅丆搚栘妛夛榑暥廤B1乮悈岺妛乯丆Vol.77